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Abstract—The introduction of the Service-Based Architecture
(SBA) for the 5G Core Networks has drastically changed the way
these networks are designed and operated. Aiming for higher flex-
ibility and agility, the adoption of SBA is the first step towards
cloud-native deployments of 5G Core. However, the high degree
of functional decomposition in SBA has implications in terms
of increased inter-NF signaling traffic during the execution of
control plane procedures, as well as an increased complexity in
orchestrating a system with tight inter-NF dependencies. In this
work, we introduce PP5GS as a stateless 5G Core architecture
that implements a procedure-based functional decomposition of
the 5G Core NFs. We develop Per-Procedure NFs for four differ-
ent control plane procedures and perform extensive evaluations in
a private cloud environment orchestrated with Kubernetes. The
results show that PP5GS requires up to 34% and 55% less com-
puting resources compared to the baseline stateful and stateless
systems, respectively, while generating at least 40 % less signaling
traffic. Moreover, complex control plane procedures can complete
up to 50% faster. Lastly, the results show that PP5GS is a more
feasible architecture in leveraging edge-offloading of SG Core
NFs.

Index Terms—5G core, SBA, control plane, performance
measurements.

I. INTRODUCTION

HE 5TH Generation (5G) of mobile communication
Tnetworks is envisioned to support a wide range of
new use-cases and an ever-increasing number of con-
nected devices. The high-bandwidth requirements of enhanced
Mobile BroadBand (eMBB) necessitate smaller cell sizes,
and consequently increase mobility-related traffic [1], [2].
Moreover, massive Machine-Type Communication (mMTC)
introduces the large-scale deployment of IoT devices and other
end-user equipment with high control to data traffic ratio [3].
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Therefore, from a control plane perspective the exploding
number of connected devices and the unprecedented volume
of control traffic lead to concerns of scalability and potential
signaling storms [4].

Guided mainly by the flexibility limitations of the previous
generations and the lack of agility in developing new fea-
tures, 3rd Generation Partnership Project (3GPP) introduced
the Service-Based Architecture (SBA) for the 5G Mobile
Core Network (5GC) in its Release 15 [5]. In the recent
years, Internet applications tend to incorporate cloud-native
design principles to tackle their flexibility and agility issues.
Therefore, the adoption of SBA aims to introduce cloud-native
concepts such as microservices to SGC deployments. SBA
follows an approach of a high degree of functional decom-
position coupled with a granular task distribution among the
Network Functions (NFs). While this simplifies each com-
ponent from an individual perspective, it does the opposite
from a system perspective. The increased number of NFs
involved in serving incoming traffic as well as the number
of messages exchanged between them have lead to very high
signaling overhead [6]. Consequently, the increased signaling
overhead has shown to have a direct impact on the fulfillment
of signaling traffic Service-Level Agreements (SLAs) [7].

Furthermore, as users are usually concerned about the expe-
rienced data plane latency, the untimely processing of control
plane traffic can have a direct effect on the data plane access
latency [8]. SBA inherently produces tight inter-NF dependen-
cies which may cause scalability issues and increased control
plane latencies if not tackled by complex orchestration mecha-
nisms [9]. In the light of this, efficiently leveraging distributed
cloud environments for SGC deployments becomes a difficult
task.

The main research question that we address in this work
is whether we can perform a different functional split for
the 5G & Beyond Core Networks that aims to increase
the performance of mobile networks while still maintain-
ing a high degree of flexibility, necessary for deployments
in cloud environments. While recent research works have
introduced improved designs [10], [11] and protocol simplifi-
cations [6], [12] for legacy 4G Core Networks, this work aims
to solve practical issues with the current SBA deployments.

In order to develop a feasible architecture for the current
and the Next Generation Mobile Networks, the main chal-
lenge lies on designing a system able to solve the following

1932-4537 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: National Chung Cheng University. Downloaded on January 25,2024 at 17:52:10 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0003-2539-9778
https://orcid.org/0000-0002-9439-7859
https://orcid.org/0000-0002-7563-859X
https://orcid.org/0000-0003-2754-5505
https://orcid.org/0000-0003-4358-8038

GOSHI et al.: PPSGS—AN EFFICIENT PROCEDURE-BASED AND STATELESS ARCHITECTURE

problems: i) high inter-NF signaling overhead observed dur-
ing the execution of control plane procedures; ii) increased
latencies or procedure completion times; and iii) constrained
NF placement in a distributed 5SGC infrastructure. Therefore,
to address performance concerns of the distributed SBA, in
this work we propose a novel architecture for 5G & Beyond
that implements a procedure-based functional split for the con-
trol plane NFs. The Per-Procedure and Stateless 5G (PP5SGS)
architecture achieves this by means of consolidating most of
the procedure processing logic in a single Per-Procedure NF
(PPNF). The diversity of the number and type of the involved
NFs in different procedures means that each PPNF can pro-
cess only the corresponding procedure, e.g., a RegNF serves
the incoming UE Registration traffic. The consolidation of the
processing logic greatly reduces the generated traffic overhead
and eliminates some of the impacts of network conditions in
the experienced procedure completion time. Moreover, PPNFs
are simpler to orchestrate because there are less inter-NF
dependencies to be considered and the system’s performance
can be better estimated. In addition, PP5GS offers function-
level scalability in contrast to the instance-level scalability in
5GC SBA. PP5GS is shown to be more resource efficient and
that is an important factor in edge deployments where the
resources are scarce. In addition, we identify an issue that
is usually overlooked with respect to the edge-offloading of
5G SBA NFs. In its current state, offloading control plane
NFs to the edge can be counter-productive as the cost of
inter-NF communication for procedure execution can lead to
degraded performance. By design, PPNFs can overcome this
issue since the processing logic is almost entirely integrated
into a single NF. Further, we argue that PP5GS brings added
value in use-cases where knowledge of incoming control traf-
fic can be leveraged to accelerate critical procedures, e.g.,
in an airport scenario with frequent Registration and PDU
Session Establishment procedures the operator can acceler-
ate their completion by deploying the relevant PPNF closer
to the users. Nonetheless, the advantages apply to a central-
ized 5GC deployment as well. In [13], we have discussed
overall aspects of the motivation and high level design of
a 5GC system that implements a procedure-based functional
decomposition. However, the system presented there serves
only as a proof of concept with only a partial implementa-
tion and evaluation of RegNF. This paper makes the following
contributions:

o We develop a stateless 5GC by implementing a 3GPP-
compliant Unstructured Data Storage Function (UDSF)
and enabling the other NFs to store their state remotely
and retrieve it when needed.

¢ We implement a gNodeB (gNB) & User Equipment (UE)
emulator that can generate control traffic in a scalable
way for a range of procedures. Additionally, we develop
a User Plane Function (UPF) emulator that can handle
the high input rates of PDU Session related procedures.

e We design PPSGS as a stateless and procedure-based
system for 5GC. Four PPNFs are implemented to
handle the execution of Registration, PDU Session
Establishment, PDU Session Release and Deregistration
procedures.
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o We deploy PP5GS in a Kubernetes cluster and perform
detailed evaluations, comparing it against the baseline
stateful 5GC as well as the stateless version. PP5GS
outperforms the other systems in terms of CPU uti-
lization, procedure completion time and communication
overhead. Additionally, we highlight its superiority in
edge offloading scenarios.

The remainder of the paper is structured as follows.
Section II presents related work in the areas of mobile
core network designs and stateless systems. Background
information with respect to 5GC and technologies used in
this work is given in Section III. PP5GS system’s design
and implementation are explained in Section IV, while in
Section V we present the evaluation setup and the obtained
results. Lastly, Section VI provides a discussion on the results
and concludes the paper.

II. RELATED WORK

Re-architecting the mobile core network: CleanG [6] lever-
ages Network Function Virtualization (NFV) and Software
Defined Networking (SDN) to design an architecture that min-
imizes the control plane latency as well as the data plane
updates latency. In their architecture, the authors propose a
single control plane NF and a single data plane NF with
consolidated logic, while considerably simplifying the con-
trol plane protocols. TurboEPC [12] considers the Evolved
Packet Core (EPC) of 4G and leverages data plane programma-
bility to offload some control plane tasks to the data plane.
By modifying the division between control and data plane
tasks, a significant fraction of signaling traffic is offloaded.
SoftBox [10] and PEPC [11] propose similar EPC-in-the-box
solutions. In Softbox, both the control and data plane process-
ing logic is consolidated in the same container, on a per-UE
basis. On the other hand, PEPC only consolidates the UE state
in EPC in a single location, while efficient access to the state
is achieved by reorganizing the NFs. In Neutrino [14], the
authors redesign the Mobility Management Entity (MME) by
introducing a consistency protocol capable of ensuring fast
failure recovery, a fast serialization engine and proactive geo-
replication. The adoption of technologies such as NFV, SDN
or data plane programmability are now a reality in 5G. In this
work, we argue that while softwarization brings great flexi-
bility to 5GC, there are also issues that need to be tackled.
Our system aims to explore better ways to leverage the flex-
ibility of softwarization, and at the same time minimize the
ramifications on performance.

Similar to our approach, authors in [15] propose to improve
the performance of Long Term Evolution (LTE) during the
execution of critical events by means of “logic-based NF seg-
regation”. However, their solution’s scope is limited to an
offloading mechanism deployed alongside EPC, unlike PP5GS
where our goal is to have a fully functioning 5G and Beyond
Core with a per-procedure functional split. MobileStream [16]
decomposes the functional blocks of monolithic EPC enti-
ties, and leverages real-time stream processing frameworks
to assemble them into control plane pipelines. While this
framework offers scalability and programmability, it is still
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a distributed architecture where the stream communication
between the blocks can span between several machines and
thus it can suffer from similar issues as SBA. On the other
hand, PP5GS is still distributed from a system point of
view, but the centralization of the processing logic on a per-
procedure basis into the PPNFs makes it possible to tackle the
overhead of the distributed architectures. Recently, the work
in [17] has introduced an architecture where the core network
is conceptualized as a single large-scale and distributed Web
service, with the functional split following the system proce-
dures and services instead of the network functions. While
they argue about the benefits of their architecture, they have
not performed any evaluations. PPSGS is deployed in a pri-
vate cloud environment and thoroughly evaluated for varying
procedures and deployment scenarios.

Lastly, to the best of our knowledge, there has been no
previous work that investigates the problems with offloading
5GC control plane NFs to the edge. In this work, we identify
a critical issue that stems from the adoption of SBA in cloud
environments that span to the edge, and detail how our system
can overcome it.

Stateless mobile core: MMLite [18] and dMME [19] imple-
ment and investigate the scalability of stateless MME entities.
More specifically, MMLite presents a stateless and fully
decomposed MME entity where each control procedure is
implemented in its own microservice. dMME proposes the
deployment of geographically distributed MMEs with remote
storage. SCALE [4] does not implement statelessness but
instead proposes a two-tier architecture for MMEs with load-
balancers and processing entities. It uses state replication to
synchronize the deployed instances. In ECHO [20], a dis-
tributed and highly available EPC architecture tailored for
public cloud deployments is presented. State is stored in an
external entity and reliability is ensured with an end-to-end
distributed state machine replication protocol. Lastly, authors
in [21] investigate the impact of introducing statelessness to
the 5G SBA. Their focus is on designing mechanisms that
reduce the cost of transactional statelessness by sharing the
user state among NFs and exploiting parallelism in execution.
However, they only focus on Access and Mobility Function
(AMF), Session Management Function (SMF) and UPF.

In this work we enable statelessness for all the 5G SBA NFs,
contrary to state of the art works which focus either on a set
of 5GC NFs or on EPC entities. Such stateless architecture
is adequate for cloud deployments where state updates occur
frequently. Furthermore, we introduce PP5SGS as a procedural
stateless architecture with high performance gains compared
to stateless SBA.

III. BACKGROUND

In this section, we look into the architecture of 5G Core
Networks (5GC) with its most important features and how
the communication between its entities is realized in the con-
trol plane. Moreover, we provide details on a 5GC project
that is considered as the baseline for our work. The major
changes in designing and operating 5GC are empowered by
the introduction of the cloud-native paradigm in this domain.
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Therefore, we highlight Kubernetes [22] as a integral tech-
nology and present some concepts used in developing our
proposed architecture and building the evaluation framework.

A. 5G Core & Service-Based Architecture

Starting with 3G, the mobile networks are separated in two
main parts, namely: i) the Access Network (AN), and ii) the
Core Network (CN). As the name suggests, the AN enables the
User Equipment (UE) to gain access to the service provider’s
network. The AN can be described as a pool of distributed
entities that provide coverage for the UEs, a task which in
the case of Radio Access Networks (RAN) is achieved by the
Base Stations (so-called gNBs in 5G).

For the UEs to be able to register with the operator and then
communicate with other UEs or exchange data with services
in the Internet, the AN needs to be connected to the CN.
Starting with Release 14 [23], the CN implements the concept
of Control and User Plane Separation (CUPS), similar to the
one applied in SDN. In terms of control plane functionalities,
the CN offers authentication, mobility and session manage-
ment, policy control, network slicing, etc. Additionally, its user
plane which consists of the User Plane Function (UPF) offers
data tunneling, routing and forwarding, policy enforcing, etc.

5G Mobile Networks are envisioned to enable new use-
cases in the areas of enhanced Mobile Broadband (eMBB),
massive Machine-Type Communication (mMTC) and Ultra-
Reliable and Low-Latency Communications (URLLC) [24].
Therefore, the CN should be designed while considering scal-
ability, flexibility and automation. Being the main organization
tasked to develop mobile communication specifications, 3GPP
first introduced a standardized version of the 5G Mobile
Core Architecture (5GC) in Release 15 [5], supporting several
architectural principles [25], such as:

e Modularized Network Functions - The partial adoption of
CUPS principles and deployment of 4G EPC entities as
Virtual Network Functions (VNFs), meant that the future
generations of CN could move away from the monolithic-
based design of NFs. Therefore, the 5GC is based on
highly modularized and distributed NFs that rely on inter-
NF communication to serve the control plane procedures.

e Adoption of cloud-native and Web-scale technologies -
At the core of this principle reside concepts such as:
i) agile development, ii) microservice architecture, and
iii) container orchestration. An agile development process
brings a lot of flexibility and lowers the time-to-market
for new 5GC NFs and features. Additionally, a microser-
vice architecture and container orchestration technologies
aid the agile development style and enable a more
fine-grained orchestration and scaling of the workloads.

o Distribution of processing power to the edge of the
network - By adopting a distributed architecture, the oper-
ators have now the flexibility to orchestrate their CN not
only at the central office, but also at the Edge of the
network. The processing capacity of the Edge can now
be exploited, resulting in lower delays and less burden
on the transport links connecting the Edge to the Core.
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Fig. 1.

These architectural principles led to the introduction of the
5G Service-Based Architecture (SBA), shown in Fig. 1. This
architecture further decomposes the legacy EPC NFs such as
MME with its functionalities being split between the Access
and Mobility Function (AMF), Session Management Function
(SMF) and Authentication Server Function (AUSF), as well
as introduces new NFs such as Network Repository Function
(NRF) or Network Slice Selection Function (NSSF). In EPC,
the number of NFs was small and point-to-point interfaces
were implemented for the communication between them (e.g.,
MME and Home Subscriber Server [HSS]). However, the sit-
uation changes greatly in 5G where the highly modularized
and distributed SBA necessitates a simplification of inter-NF
communication mechanisms. To address this, Service-Based
Interfaces (SBIs) are introduced for the inter-NF communica-
tion. Similar to the microservice architecture, SBI is a concept
borrowed from the IT applications domain. The main idea
behind it is that each SGC NFs exposes its services through
REST interfaces that are defined in standardized OpenAPI [26]
descriptions. During start-up the NFs register their services to
the NRF, where other NFs can discover and consume them by
sending HTTP/2 requests. Overall, the adoption of SBIs marks
a significant shift in how the CN is designed and operated,
distinguishing it from the previous generations.

B. State Management in 5GC

In Section III-A, we mentioned that the adoption of cloud-
native principles and technologies is one of the main pillars
of the 5GC design. As such, the deployment of NFs in cloud
environments is performed using lightweight containers dis-
tributed among the available hardware resources. However,
aiming to optimally schedule services in the infrastructure,
cloud orchestration tools can decide at any time to terminate a
container, move them into new machines or horizontally scale
the deployed instances. Moreover, containers are not inherently
designed to be highly reliable and may fail at any time.

A stateful application maintains locally the necessary con-
text for its correct operation. In case the application crashes
or is terminated, the information is lost and hence, affects
directly the offered services. Therefore, the absence of guar-
anteed liveliness for a given instance makes the deployment
of stateful applications unfeasible. In comparison, a stateless
application is designed by separating the processing logic from
the state database (DB). When the application needs context
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information, it queries the DB and upon finishing the process-
ing, it updates the information in the DB. Stateless services can
be scaled-out when the input load increases, as processing is
not bound to any specific instance. In contrast, stateful services
require traffic to be routed always to the instance which has
the context information, hence requiring more careful lifecycle
management than the stateless and ephemeral instances.
Aiming to support stateless deployments of 5GC, 3GPP
introduced the Unstructured Data Storage Function (UDSF)
to be used as a state DB. Statelessness in 5GC can be
implemented at a procedural or transactional level [21]. A
transaction can be defined as a single interaction between two
NFs (e.g., request/response), and a procedure comprises a set
of transactions. In the case of a procedural stateless NF, the
information is exchanged only at the beginning and the end
of the procedure. On the other hand, a transactional stateless
NF communicates with UDSF for each individual transaction.
While it is more fine-grained, transactional statelessness intro-
duces a lot of overhead. Due to their design, some NFs cannot
extract information regarding the ongoing procedure, mak-
ing transactional statelessness the only implementable option.
Nonetheless, statelessness is a feature and as such it is up
to the developers and operators to decide what information
to include as part of the state and how to store/retrieve it,
as seen fit for their deployment. For more information on our
implementation of statelessness in SGC, refer to Section IV-A.

C. Free5GC

Free5GC [27] is one of the first open-source implemen-
tations of the 5SGC SBA. In its early versions, it started as
an extension of the NextEPC [28] towards 5GC by migrating
MME, Serving Gateway (SGW), and Packet Data Network
Gateway (PGW) to AMF, SMF and UPF. New 5GC NFs were
added gradually, together with a full migration to SBIs accord-
ing to the 3GPP and OpenAPI specifications. Starting from
v3.0.0, Free5GC offers a fully operational SGC SBA imple-
mentation compliant with Release 15 and a viable platform
for 5GC evaluations and feature-testing [29].

Free5GC is developed following an agile process, where
each of the NFs are developed separately, thus allow-
ing for fast improvements and integration of new features.
The Free5GC system offers: i) control plane NFs includ-
ing AMF, SMF, AUSF, NRF, NSSF, Policy Control Function
(PCF), Unified Data Management (UDM) and Unified Data
Repository (UDR); ii) a softwarized User Plane Function
(UPF). The control plane functions are implemented using
Go [30] which allows building scalable applications with a
very small memory footprint. Additionally, the NFs can be eas-
ily containerized because their code can be compiled into static
binaries. The UPF, on the other hand, is implemented in C lan-
guage and serves as a good prototype for testbed deployments
of 5GC.

Alongside the NFs mentioned above, a MongoDB [31]
instance is deployed. It serves as a backend database for NRF
and UDR to store NF-related and UE-related information such
as policy data, authentication keys, authentications status, etc.
However, its purpose is not to enable any form of stateless
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deployment for the control plane NFs. The UE context and
the NFs’ self-context is still maintained locally.

Other alternatives exist that implement the 5G SBA such
as Open5GCore [32], OpenAirlnterface 5GCN [33] and
Open5GS [34]. However, Free5GC is one of the first, open-
source and well-maintained projects and therefore it is consid-
ered for this work. We have also had the chance to contribute
to its source-code with a feature that enables the NFs to adver-
tise Kubernetes Service domain names when registering to
NRF, thus making the deployment of FreeSGC in a cloud
environment easier [9].

D. Cloud-Native Orchestration

Public and private cloud environments conveniently offer
flexible orchestration, high resiliency and high scalability.
Thus, by leveraging cloud-native orchestration tools, tele-
com service providers benefit from: i) on-demand service
provisioning and autoscaling, ii) cost-efficient operation and
management, and iii) faster time-to-market for new services.

Until recently, the development process of new applications
followed a monolithic approach, where despite the logical
modularity, the application is packaged and deployed as a sin-
gle artifact. However, the monolithic architecture poses some
major drawbacks, such as:

e Applications may become too large and complex thus

affecting the start-up time.

¢ Difficulties in scaling because different modules may
have conflicting resource requirements.

o Difficulties in adopting new technologies as changes
in languages or frameworks will affect the entire
application.

This does not mean that monolithic applications cannot be
deployed in cloud environment, though their architecture may
become a barrier if the developers want to leverage the benefits
of cloud environments. Therefore, at the core of cloud-native
deployments, resides the concept of microservices. Contrary to
monolithic applications, an application based on the microser-
vices architecture is split into multiple small applications or
services. Each microservice implements a specific set of func-
tionalities and inter-communication is achieved by exposing
and consuming APIs. A typical deployment of such architec-
ture consists of the separation of the communication stack,
processing logic and storage management.

Containerization is a lightweight virtualization technol-
ogy that abstracts the underlying physical resources from
the applications and provides process-based isolation such
that microservices do not interfere with one another, while
still sharing the same operating system kernel. However,
microservice applications can quickly become too complex
to orchestrate and manage as more instances are deployed
to handle the incoming load or provide additional features.
Therefore, containerized workloads and services are generally
managed through container orchestration tools. Kubernetes
(K8s) [22] is the most used framework among public and
private cloud operators for managing their clusters. A K8s
cluster consists of a set of nodes (bare-metal or VMs), which
act either as Master or Worker. To create the cluster, the K8s
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control plane applications are initialized at the Master node
and then Worker nodes are added as required by the operator’s
needs. During registration, the Workers expose their resource
information to the Master which has global knowledge over
the entire cluster and keeps track of the Workers’ states. When
new workload requests come from the operator, the Master
handles their scheduling among the available Workers. In a
cloud environment, containers are considered to be ephemeral,
meaning that they can fail or be destroyed at any time to match
the desired state of the cluster. In such cases, the advantages
of tools like K8s become apparent as it can restart crashed
applications, reschedule workloads when node failures occur,
perform rolling updates, etc.

Some KS8s concepts used in this work are explained

below [35]:

e Pod - Is a group of one or more containers and it is
the smallest unit that can be created, deployed and man-
aged with K8s. Within a Pod, the storage and network
resources are shared.

e DaemonsSet - Is used to ensure that a copy of a Pod runs in
all (or some) of the nodes. Use cases include deployment
of monitoring and log-collection daemons.

e Service - Communication between applications in a K8s
cluster cannot always rely on the Pods’ IP addresses
because they may not be known at initialization time
or they may change during runtime. To overcome this,
Services are introduced as an abstraction mechanism to
expose the application running on a set of Pods. Services
have their own IP address and DNS name and can
load-balance the incoming traffic among the set of Pods.

IV. SYSTEM DESIGN AND IMPLEMENTATION

In this section, details about the implementation of the Per-
Procedure Stateless 5G (PP5GS) system are given. First, the
implementation of UDSF for our stateless SGC is presented.
Next, the architecture of Per-Procedure Network Functions
(PPNFs) is introduced and the implementation steps are sum-
marized. During the development phase, we follow Continuous
Integration and Continuous Development (CI/CD) practices.
We have set up a CI/CD pipeline into our git repository that
compiles each NF after its implementation changes. Docker
images are then built from the new binaries and pushed to our
private container registry. The stored images are easily acces-
sible during deployment and the configuration files ensure that
always the latest versions are chosen.

A. Stateless Free5GC

As part of the contributions of this work, we have imple-
mented a stateless system by separating the context from the
processing logic. 3GPP Release 15 includes a specification
for the Unstructured Data Storage Function (UDSF) which
exposes a data repository service that accepts arbitrary formed
binary payloads, the so-called blocks. Clients (other NFs) can
then store application state at the UDSF in any serialization
format. One or more blocks belong to a record, which can
store additional metadata such as Time-To-Live (TTL) dura-
tion. Additionally, a schema description can be attached to
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every record to achieve self-describing data records. UDSF
exposes two hierarchical levels that allow for namespacing and
sharding of records. For ease of implementation, we choose
to serialize the application state in the JSON text format. The
block payloads are handled transparently and the received
bytes are returned unmodified. Being unstructured, UDSF’s
implementation is backed by a key-value database. The key is
constructed from the hierarchical and unique record identifiers.
Every record is stored as a single value to ensure safe TTL
expiration and atomic updates. One choice for the database
backend is the embedded BadgerDB database [36]. It oper-
ates only in-process and is not distributed between instances of
UDSF. Another choice is the key-value store Redis [37]. Here
the UDSF connects to a remote database server and acts as an
SBA proxy for the SGC. Fig. 2 shows a benchmark where we
compared the two implementations over a wide range of pay-
loads sampled from the different client NFs. While we observe
acceptable performance for both options even under increasing
concurrency, the embedded BadgerDB can perform consider-
ably more read and write operations. Therefore, in order to
ensure consistency we deploy a single UDSF instance with
BadgerDB as backend database.

In addition, some of the SGC NFs need to be modified to
enable statelessness. NRF and UDR reuse the already existing
MongoDB connection to store subscriptions and do not require
modifications. Moreover, NSSF does not store any UE-specific
application state. For the AMF, many small NGAP messages
are exchanged in quick succession per procedure, and there-
fore, procedural statelessness is a reasonable choice. It loads
the context to handle a UE at the beginning of a procedure and
stores it back on completion. To help with development and
testing, AMF will always perform an initial Registration pro-
cedure and not query UDSF for any existing UE context during
this procedure. Following the same logic, the UE context is
not deleted from UDSF after performing a UE-originating
Deregistration procedure. Technically, UDSF allows a get-and-
forget operation, where the record is returned and deleted in
the same request.

For the remaining NFs, namely AUSF, PCF, SMF, and
UDM, we implement transactional statelessness from the per-
spective of the HTTP API. On request, the NF will try to load
the UE context from UDSF and, before returning a response, it
will store it back. Using this naive implementation, we ensure
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TABLE I
INVOLVED NFS IN THE EXECUTION OF CONTROL PLANE PROCEDURES

NF AMF | SMF |AUSF | PCF | NRF | NSSF [UDM|UDR
Procedure
Registration v v v v v v
PDU Sx. Est. v v v v v v v
PDU Sx. Rel. v v
Deregistration v v v v

the context is always up to date and consistent. This, however,
introduces overhead, as, e.g., UDM is frequently used by the
other NFs and causes multiple exchanges with UDSF. While
UDSF supports the HTTP entity tag header that allows the
requesting NF to indicate the last known state and avoid unnec-
essary communication, this mechanism is not yet implemented
by the client NFs. In SMF, the transactional statelessness also
covers any communication with the UPF as part of the request.

B. Per-Procedure Network Functions

With the high degree of functional decomposition intro-
duced by SBA, the execution of control plane procedures spans
multiple NFs, each performing a specific task. In Table I, the
involved NFs in each of the considered control plane pro-
cedures are shown. Between these NFs, multiple messages
are exchanged using a request/response or subscribe/notify
mechanism. While there are other control plane procedures as
well, the four selected procedures are representative given that
they have different communication profiles. The Registration
and PDU Session Establishment procedures trigger complex
Service Function Chains (SFCs) where 6 and 7 NFs are
involved, respectively. On the other hand, the PDU Session
Release and Deregistration procedures rely less on inter-NF
communication and the logic is concentrated in fewer NFs.
UPF is also involved in some of the procedures, however, our
focus is only on the control plane NFs.

The main idea behind the proposed PPSGS system is to
break the tight inter-NF dependencies through the introduction
of Per-Procedure NFs (PPNFs). These new NFs are self-
contained, meaning that all the necessary logic for serving
a specific control plane procedure is integrated in the source-
code of the NF. We develop PP5GS using the source-code of
stateless Free5GC v3.0.6 (see Section IV-A) as the basis for
the new NFs. First, all the involved NFs are identified and the
observations are validated with the relevant 3GPP specifica-
tions. Due to their functions as service-discovery mechanisms
or database abstraction layers, we do not integrate NREF,
UDR and UDSF in the new PPNFs. Their implementation is
dependent on the backend database used by the operator and
therefore integrating them into multiple PPNFs is not feasible
from an implementation perspective. For example, the source-
code of the NF serving Registration procedure (RegNF) only
contains logic that in an SBA system is distributed among
AMF, AUSF, PCF and UDM. Next, each processing block
that is executed during the given procedure needs to be iden-
tified. To achieve this, we track the requests that are initiated
inside 5GC and leverage the SBIs that the involved NFs expose
through their HTTP/REST server. By inspecting the inter-NF
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Fig. 3.  Integration of processing blocks from different NFs in a single

Registration PPNF. The blocks highlighted with colors are the ones executed
during the Registration procedure.

traffic that is generated in 5GC, it is possible to extract the
URI information of the destination endpoints for each request,
leading us to their callback functions.

In the integration phase, AMF is considered as the base
NF and its functionalities are extended with the other process-
ing blocks. To better understand the architecture of PPNFs,
we refer the reader to Fig. 3 where RegNF is shown. Each
of the highlighted processing blocks do not represent a
single callback function, but rather a logical group of func-
tions. RegNF retains the AMF’s NG Application Protocol
(NGAP) and Non-Access Stratum (NAS) communication han-
dling logic necessary to process the packets coming from
UE and gNB, and in addition the following endpoints are
integrated: i) /nausf-auth is migrated from AUSF, ii)
/npcf-am-policy-control is migrated from PCF, and
iii) some functions from the /nudm-ueau, /nudm-uecm
and /nudm-sdm are migrated from UDM.

Moreover, a unified UE context is built such that it includes
all the information previously split among the different NFs.
Particular attention is given to any duplicated information in
order to avoid redundancy and unnecessary overhead. Since
in PP5GS there will be different NFs handling different pro-
cedures, it is necessary that at least procedural statelessness is
implemented. Therefore, once a PPNF finishes serving a pro-
cedure, it serializes the UE context and state and sends it to
UDSF which maintains the latest versions. The local context
is deleted to avoid wasting memory resources unnecessarily.
When a following procedure is initiated, the responsible PPNF
queries the information from UDSF before proceeding to serve
the request.

Using the methodology described above, in this work we
have successfully developed RegNF, PDUEstNF, PDUReINF
and DeregNF to execute Registration, PDU Session
Establishment, PDU Session Release and Deregistration
procedures, respectively, as part of our proposed PP5GS
solution.
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Fig. 4. Overview of the framework setup for the evaluation of the different
5GC systems. The cluster is orchestrated using Kubernetes.

V. PERFORMANCE EVALUATION

In this work, we mainly focus on the performance assess-
ment of our proposed architecture in a small scale private
cloud-native environment. As shown in Fig. 4, we set up
a testbed composed of 11 bare-metal nodes (machines) and
use Kubernetes as the orchestration tool. The machines are
interconnected using a 1Gb switch, thus creating an isolated
environment and avoiding network interference.

In this testbed we distinguish between three types of nodes:

e Master Node - 1t is responsible only for running the K8s
control plane and orchestrating the deployment of SGC
systems. No additional workload is scheduled on this
node.

o 5GC Worker Node - The baseline deployment mode that
we consider is a fully distributed one where each NF
is scheduled on a separate node. This mode is selected
for two main reasons: i) to avoid multiple NFs com-
peting for the same physical resources, and ii) ensure
comparable communication conditions as inter-NF traffic
will traverse the same infrastructure in all scenarios. In
addition to the SGC NFs, an Envoy-Proxy [38] instance
is deployed as a sidecar container as part of Istio [39]
service-mesh. It facilitates traffic routing and manage-
ment and allows for some metrics collection as well. The
considered deployments consist of at most 9 control plane
NFs, thus we deploy 9 worker nodes in the cluster. The
cluster of workers is homogeneous and made of DELL
OptiPlex 9020 workstations equipped with an octa-core
Intel i7-4770 CPU running at 3.40GHz and 16GB
of RAM.

o Emulator Node - This node is used to host the gNB & UE
Emulator (gNBEmu) application. We develop this appli-
cation for the purpose of generating scalable control plane
traffic, and evaluate the performance of the 5G systems.
For more information on the implementation details and
capabilities of gNBEmu, please refer to Appendix A.
Additionally, it hosts Prometheus and Collector instances
which are necessary for the measurements setup (see
Section V-A).
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Fig. 5.
the same for all the systems.

All the nodes in the testbed run Ubuntu 18.04.4 LTS
with kernel version 5.0.0-23-generic. The installed container-
runtime is Docker v20.10.5. Kubernetes v1.22.1 is deployed
with Calico [40] being used as the Container Network
Interface (CNI) plugin.

Lastly, some of the control plane procedures that we eval-
uate necessitate the deployment of UPF. Therefore, we have
developed a lightweight UPF emulator (UPFe) that can handle
a high rate of control plane traffic. In Appendix B, you can
find a detailed description on the implementation of UPFe.

A. Measurement Setup

For the purpose of evaluating the improvements that PP5GS
brings, we consider the following Systems Under Test (SUTs):
o Stateful Free5GC - This is the default implementation
where we only optimize SCTP-related parameters (see
Appendix A). Each of the NFs is deployed in a sep-
arate Node, as illustrated in Fig. 5a. In this work, this
deployment is considered as the baseline system.

o Stateless Free5SGC - It is built on top of Stateful
Free5SGC, by implementing statelessness as described in
Section III-B. As shown in Fig. 5c, in this system we
additionally deploy the UDSF instance which is shared
by the NFs to store their application state/context.

e Procedure-Pods - In this system, we consider slicing
5GC based on the control plane procedures, as illus-
trated in Fig. 5b. To achieve this, we initialize multi-
container Pods where all the involved NFs (see Table I)
are deployed in a single Pod. This deployment requires
the use of stateless NFs since more than one instance/NF
are deployed, e.g., one AMF instance per slice. Each of
the Procedure-Pods is deployed in a separate Node. The
inter-NF communication does not leave the Pod, with the
exception of traffic destined to NRF, UDR and UDSF
which are shared between all NFs and deployed once for
the entire cluster.

e PP5GS - Instead of the standardized 5SGC NFs, in this
system we deploy the PPNFs developed with the aim
of breaking the inter-NF dependencies during the execu-
tion of control plane procedures. Each of the PPNFs is
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Overview of the evaluated systems: a) Stateful Free5GC, b) Stateless Free5GC, ¢) Procedure-Pods, and d) PP5GS. The hardware infrastructure is

TABLE 11
SUMMARY OF INPUT PARAMETERS

Value

e Registration

e PDU Session Establishment
e PDU Session Release

o Deregistration

Parameter

Control plane procedure

NF deployment 1 Pod/Node

Number of new UEs/sec | 25,50, 100,200, 300
IAT for new UEs 3ms

Measurement duration 45s

Campaigns per scenario 8

deployed in a separate node, while sharing the function-
alities of NRF, UDR and UDSF in the same manner as
Procedure-Pods. This deployment is illustrated in Fig. 5d.

In addition to the above-mentioned systems, we deploy a
metrics collection framework. First, we have written a Python
script which finds the NFs that are running in a Node and then
collects resource utilization data about them. These data points
are then wrapped as a gauge object and exposed through the
Prometheus API [41]. The Metrics Exporter script is pack-
aged into a Docker image and deployed as a DaemonSet in
each Node of the cluster. The Prometheus instance that runs
in the Emulator Node (see Fig. 4) is configured to periodi-
cally scrape the endpoints every 1s. In addition, we deploy
a Collector application. The Collector is a data sink and it
implements a HTTP server to facilitate the metrics reporting
process. Furthermore, the Collector queries the NFs’ logs and
KS8s cluster state to facilitate debugging.

In Table II, we summarize the input parameters used
during the evaluation. We asses the performance of the
proposed PP5GS for four different control plane procedures:
i) Registration, ii) PDU Session Establishment, iii) PDU
Session Release, and iv) Deregistration. Furthermore, we con-
sider different rates of input traffic with the number of new
UEs/s taking the following values [25, 50, 100, 200, 300], and
each scenario running for 45s. We define an interarrival time
(IAT) of 3ms for new procedures, following a uniform distri-
bution. This value is used only to spread the initialization of
new UEs over a 1s interval, and it does not affect the UEs/s
values defined above. Overall, 8 campaigns for each scenario
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Fig. 6. Number of UEs that have started a control plane procedure within 1 ms for a scenario with 100 initiated UEs/s. With a uniformly distributed IAT

of 3, increases in the queue are expected until ¢; = 300ms. The darker lines show the average values while the lighter areas denote variance based on
the standard deviation. The results confirm that gNBEmu is able to handle large volume of traffic generation, and they reveal a potential bottleneck in the
Stateless FreeSGC and Procedure-Pods systems when input rates are higher than 100 UEs/s.

are run in a fully automated manner and the measurements are
then aggregated.

In the following subsections, we will introduce the Key
Performance Indicators (KPIs) and present the obtained results
from our evaluation.

B. Emulator Performance

We emphasize that the control plane traffic generation dif-
fers from that on the data plane since a control plane procedure
requires exchanging multiple messages between RAN and
5GC (for more information refer to Appendix A). Therefore,
we first assess the performance of gNBEmu to confirm that
it can indeed generate traffic according to its configuration
file description. The evaluation is performed for all the SuTs
and four independent measurements that run for 45s are
executed for each control plane procedure. The input traffic
consists of 100 UEs/s with an IAT of 3 ms. Therefore, within
s it is expected that no new procedures are initialized after
t; = 300 ms.

First, we collect the procedures’ start and end timestamps
from the gNBEmu. In post processing, we then calculate the
number of UEs that are concurrently being served by the
system. In Fig. 6 we show the average number of queued pro-
cedures (UEs) in the system within the 1s interval for all
the considered control plane procedures. When comparing the
results of different procedures, we observe that the Registration
procedure (shown in Fig. 6a) exhibits the highest number of
queued UEs for all the systems. This is expected as it is the
most complex procedure in terms of inter-NF communication,
hence taking more time to finish each execution. Nonetheless,
the gNBEmu correctly initiates new procedures in accordance
with the traffic model and starting from ¢{; = 300ms the

number of queued UEs drops (i.e., there are no new procedures
initialized after this point).

Overall, PP5GS exhibits the lowest number of queued UEs
in the system for three out of four procedures. Only in the PDU
Session Release shown in Fig. 6¢c, we observe that Stateful
FreeSGC outperforms PP5GS. On the other hand, Stateless
Free5GC and Procedure-Pods exhibit poorer performance,
especially in the case of the Registration procedure. Out of
the total 100 triggered UEs in 1s, at ¢{; = 300 ms there are 73
and 82 queued UEs for the Stateless Free5SGC and Procedure-
Pods, respectively. Consequently, the execution of all queued
Registration procedures finishes at ~ 600 ms for Stateless
FreeSGC and ~ 700ms for Procedure-Pods. Therefore, we
expect that for scenarios with 200 and 300 UEs/s the execu-
tion will not be completed within the 1s and some of the
procedures will be carried to the next timeslot, leading to an
overload in the 5GC.

C. CPU Utilization

In this work, we consider CPU utilization to be one of the
main KPIs for comparing our proposed architecture with the
other SBA systems. The main reason behind this is the impor-
tance of efficient resource utilization in cloud-native 5GC, as
this inherently leads to better scalability and facilitates edge
offloading of SGC NFs.

In our measurement setup, the Metrics Exporter script col-
lects CPU Utilization data every 1 s for all the deployed NFs.
The average CPU utilization values with respect to the number
of new procedures per second are shown in Fig. 7. Stacked bar
plots are chosen to better illustrate the cumulative system CPU
utilization. In Section IV-B, we explained that the functionali-
ties of NRF, UDR and UDSF are not integrated in the PPNFs.
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Fig. 7. Average CPU utilization of 5GC NFs w.r.t. the number of initiated procedures per second, for all the considered control plane procedures. The

hatched areas represent AMF’s utilization in each of the systems where it stands as a separate NF. The solid colored areas represent the utilization of the rest
of NFs in the chain, which in the case of PP5GS are integrated together. Utilization of NRF, UDR and UDSF is shown separately since they are deployed as

separate Pods in all systems.

Therefore, we illustrate their CPU utilization in grayscale,
while the rest of the involved NFs are shown in colors. For the
Stateful Free5GC, Stateless Free5SGC and Procedure-Pods, the
utilization of AMF is highlighted and represented in dashed
lines.

For all the considered procedures and input traffic configu-
rations, the Stateless FreeSGC system exhibits higher CPU
utilization compared to the Stateful FreeSGC. During the
execution of more complex procedures, Stateless Free5GC
consumes on average 43% and 49% more resources for
the Registration and PDU Session Establishment procedures,
respectively. The difference becomes bigger for the PDU
Session Release and Deregistration procedures where, respec-
tively, 98% and 89% more resources are consumed. A major
contributor to this increase is the UDSF, and as can be seen
in Fig. 7c and Fig. 7d, it comprises a big chunk of the over-
all CPU utilization. Nonetheless, an increase of the consumed
resources can be observed also by comparing the colored bars.
This is a result of the fact that in the stateless system the
NFs need to perform additional processing such as serial-
ization/deserialization of their context to communicate with
UDSF.

Similar results are observed also for the Procedure-Pods
system due to the fact that the same implementation of NFs
is used as in the Stateless Free5GC system. However, com-
pared to Stateless FreeSGC, we observe an increase of the
NRF’s utilization by ~55% during Registration and ~46%
during PDU Session Establishment. The reason for this is
the higher number of deployed NFs while there is only one
NREF instance in the Procedure-Pods scenario. Moreover, an

interesting behavior occurs during Registration for the sce-
nario with 300 UEs/s. Unlike the previous values, Procedure-
Pods setup exhibits lower utilization compared to Stateless
Free5GC. This behavior can be explained using the obser-
vations derived from Fig. 6a, where we concluded that for
high input rates, the execution may not always be completed
within the expected 1s time frame, leading to a bottleneck in
5GC. Therefore, in this scenario the high number of unfinished
procedures has caused AMF to bottleneck and consequently
produce less traffic towards the other NFs in the chain.

Our proposed PP5GS system exhibits the best performance
in terms of efficient resource utilization. For the Registration
procedure, on average it requires 26% and 42% less resources
compared to Stateful Free5GC and Stateless Free5SGC respec-
tively. The efficiency increases further during PDU Session
Establishment Procedure, with an improvement of 34%
compared to Stateful Free5GC and 55% compared to
Stateless Free5GC. For the less complex procedures, PP5GS’
performance seems to be on-par with Stateful FreeSGC which
is again a very good performance considering the added fea-
ture of statelessness. Compared to Stateless FreeSGC, ~45%
less resources are required for both procedures.

D. Procedure Completion Times

One of the goals we aim to achieve with our proposed
PP5GS is the reduction of latency or Procedure Completion
Time (PCT). While generally the goal in 5G is to reduce
data plane latency, the fast completion of control plane pro-
cedures has a direct impact on the data plane. For instance,
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Fig. 8. Procedure Completion Times w.r.t. the number of new initiated procedures per second for all the considered control plane procedures. Each box

represent data collected over 8 campaigns, each executing for 45s. For better visibility, we have omitted the outliers from the plots while still considering

them when calculating the mean values.

the faster SGC manages to complete Registration and PDU
Session Establishment, the sooner can UEs start transmitting
in the data plane. Therefore, we consider PCT to be the main
KPI denoting the performance of 5GC.

As denoted by its name, PCT is defined as the time needed
to complete the execution of a control plane procedure. Having
full control over gNBEmu allows us to collect timestamps and
directly calculate this metric. The four procedures considered
in this work are all UE-initiated and the first timestamp is
taken right before gNBEmu forwards the first message to SGC.
Below we give some more details regarding the messages that
trigger the timestamping operation for each procedure:

e Registration - We consider the time between
Registration Request and Registration
Complete NAS messages.

PDU Session Establishment - To mark the start of the
procedure we use PDU Session Establishment
Request and the timer is stopped after receiving
the PDU Session Establishment Accept NAS
message.

PDU Session Release - PDU Session Release
Request and PDU Session Release Complete
are respectively the first and last SM NAS messages that
trigger timestamping.

Deregistration - The UE-initiated Deregistration proce-
dure starts with a Deregistration Request NAS
message and ends with a UE Context Release
Complete NGAP message.

In all the procedures, except for the Registration Procedure,
there are still some exchanged messages between SGC NFs
taking place even after we timestamp the end of the procedure.

However, in this work PCT reflects the experienced process-
ing time from the UE perspective and we are therefore not
interested in including the execution time of the remaining
processes.

The PCT comparisons for the four systems with respect
to the number of new initiated procedures per second are
shown in Fig. 8. The results collected for the Registration
and PDU Session Establishment procedures confirm the
enhanced performance of PP5GS compared to the baseline
Stateful FreeSGC. On average, PP5SGS completes Registration
42% faster and PDU Session Establishment 50% faster than
the baseline. Similar to what we observed in CPU uti-
lization, statelessness of PP5GS has a higher cost for less
complex procedures. Therefore, compared to the baseline,
PDU Session Release (see Fig. 8c) and Deregistration (see
Fig. 8d) take on average ~12% and ~8% longer. However,
in terms of absolute values the difference is negligible being
~1ms.

On the other hand, Stateless FreeSGC and Procedure-Pods
exhibit very low performance compared to the other systems.
Especially for the complex procedures, these systems scale
very poorly with the increasing input rate. In the scenario
with 300 UEs/s performing the Registration procedure, aver-
age PCTs reach 521 ms and 11.48 s for the Stateless Free5GC
and Procedure-Pods, respectively. Therefore, we have excluded
them from the plots as their performance is not comparable to
the other high-performing systems.

PCT for other traffic patterns: In the evaluations presented
above, we have defined a deterministic IAT of 3 ms for all the
considered number of newly initiated procedures. To provide
a better view on PP5GS’s performance and how it compares
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TABLE III
CONFIGURATION OF IAT DISTRIBUTION FOR
DIFFERENT TRAFFIC PATTERNS

Configuration IAT Distribution
A Deterministic: 2.5 ms
B Bimodal: 2 ms or 3 ms with probability 0.5 each
C Multimodal: 1 ms, 2 ms, 3 ms or 4 ms with equal prob.
600 1 3 Stateful Free5GC
- [ PP5GS
£ 400 ~
2
200

By #,

Traffic Pattern Configuration

Fig. 9. Procedure Completion Times for the Registration procedure for
400 UEs/s with different traffic pattern configurations.

with the baseline, we define three different configurations of
IAT distribution resulting in different control plane traffic pat-
terns. These configurations are presented in Table III, and
for each configuration we consider a scale of 400 UEs/s. In
configuration A, we consider a deterministic IAT of 2.5 ms
to accommodate the initialization of 400 UEs/s. In configu-
ration B, we consider a bimodal distribution where the IAT
between new procedures has a value of 2 ms or 3 ms where
each option has a probability of 0.5. In configuration C,
a multimodal distribution is considered where the IAT has
a value of [1ms, 2ms, 3ms, 4ms], each with an equal
probability of 0.25.

In Fig. 9, we show the PCT values for the Registration
procedure for the proposed PP5GS system and the baseline
Stateful FreeSGC. The obtained results show that for the same
number of UEs/s, the traffic patterns yield different results
w.r.t. the PCTs. Nonetheless, PPSGS still outperforms the
baseline for all the considered configurations.

E. Control Plane Communication Overhead

With the proposed PP5SGS, we show the reduction of control
plane communication overhead stemming from the adoption
of SBA and the high functional decomposition. In PP5GS, the
deployment of the self-contained PPNFs inherently reduces
the exchanged traffic because: i) there is no inter-NF commu-
nication between the integrated NFs, ii) less requests need to
be send to NRF for discovering the other NFs in the chain, and
iii) less communication with UDSF since the entire system is
procedural-stateless.

In order to evaluate this KPI, data regarding number of
HTTP requests per second are collected by leveraging the
Envoy-Proxy container (see Section V-A). The number of
requests per second with respect to the destination NF for
each of the control plane procedures are shown in Fig. 10.
As for destination NFs we consider NRF, UDR and UDSF
since they are deployed separately, and “Other” which refers
to SBA NFs that are integrated into PPNFs. Measurements
are collected for a scenario with 100 new procedures initiated
every ls.
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Fig. 10. Number of HTTP requests per second triggered during the execution
of different control plane procedures w.r.t. the destination NF. The values are
proportional to the number of UEs/s executing their procedures. Measurements
are collected for the scenario with 100 new UEs/s.

When comparing Stateless Free5GC and Procedure-Pods,
the only difference is regarding traffic destined to Other NFs.
Having a multi-container deployment in the case of Procedure-
Pods means that the inter-NF traffic does not leave the Pod
namespace, hence no traffic destined for Other. Nonetheless,
in a more optimal deployment it would make sense for
the Procedure-Pods system to avoid sending NF-discovery
requests and instead use a static addressing scheme.

To compare the total number of requests generated in the
systems, we sum the number of requests destined for each
of the involved NFs. For the Registration procedure, PP5GS
achieves a 57% reduction compared to Stateful FreeSGC and
72% compared to Stateless Free5GC. During PDU Session
Establishment, PP5SGS generates 61% and 72% less requests
compared to Stateful FreeSGC and Stateless Free5GC, respec-
tively. During the PDU Session Release and Deregistration
procedures, PP5GS achieves a reduction of 83% and 75%,
respectively, compared to Stateless FreeSGC, while in com-
parison to Stateful FreeSGC the reduction is 50% and 40%.

The measured average number of requests per second con-
firms the expected improvements as calculated by observing
the inter-NF communication patterns. For all the procedures,
PP5GS proves to be considerably more efficient in compari-
son to the other systems, therefore being a very good candidate
architecture in reducing the control plane signaling overhead
in 5GC.

F. Performance Evaluation for Edge Offloading Scenarios

Lastly, we evaluate the performance of PP5GS in scenarios
where edge offloading of 5SGC NFs is performed. While 5GC
SBA offers great flexibility in orchestration and deployment,
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Fig. 11. Overview of the deployments considered for edge-offloading evaluations.
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Fig. 12. Procedure Completion Times w.r.t. the number of new initiated procedures per second for all the considered control plane procedures. For the

CentralizedFree5GC and EdgeAMF scenarios, the stateful implementation of FreeSGC is used. Edge PPNF on the other hand uses the proposed PP5GS

implementation. For better visibility, outliers are omitted from the plots.

the inter-NF dependencies during procedure execution may
in fact be counter-productive. To confirm this behavior, we
set up a testbed where a logical separation between the Edge
and Core parts of the network is created. Using a tool such
as Linux Traffic Control (tc), a 5ms round-trip delay is
injected to the interface connecting the edge node to the rest
of 5GC. Then, we consider the following deployments for our
evaluation:

o Centralized 5GCN where only gNBEmu and UPF run at
the edge, while all control plane NFs are deployed in the
central cloud as shown in Fig. 11a.

o Edge AMF where only AMF is offloaded to the edge
in an attempt to increase the performance as shown in
Fig. 11b.

e Edge PPNF where depending on the procedure the rel-
evant PPNF is offloaded while NRF, UDR and UDSF
reside in the Core as shown in Fig. 11c.

The boxplots of the PCT with respect to the number of
new initiated procedures are shown in Fig. 12. It can be seen
that the performance of 5GC during the execution of complex
procedures drops when we offload AMF to the edge. The rea-
son is that the number of messages exchanged between the
AMF and the other NFs is higher than the amount of traffic
exchanged between gNBEmu or UPF and the control plane
NFs. Since every pair of messages exchanged encounters at
least S ms of transmission delay, the PCTs increase consider-
ably. This is however not the case for less-complex procedures
where the processing logic is anyway mostly contained in the
AMF and the difference between the two deployments is neg-
ligible. On the other hand, offloading a PPNF indeed mitigates
the issue seen with offloading 5G SBA NFs. The median
values of the obtained measurements for the Registration,

PDU Session Establishment and PDU Session Release proce-
dures are always lower than Edge-AMF. The only exception
is observed during Deregistration where Edge PPNF exhibits
similar performance to the other deployments. The reason
is due to the number of messages exchanged between NFs
deployed in the Edge and Core parts of the network being
equal in all the considered deployments. Lastly, due to its
architecture where processing logic is contained in a single
PPNEF, PP5GS is able to complete most of the procedures faster
than the Centralized deployment as well.

VI. DISCUSSION AND CONCLUSION

In the evaluations we show that the benefits of a procedure-
based architecture are manifold, especially for control plane
procedures that require the involvement of many NFs during
their execution. First, the CPU utilization evaluation shows
that the integration of processing logic in a single NF reduces
the overall needed resources, hence increasing the energy effi-
ciency. Moreover, it enables deploying the SGC NFs in the
edge, which has limited resources compared to the central
cloud. Compared to stateless deployments, PP5GS requires
~42%—55% less CPU resources. Furthermore, we demon-
strate that offloading single NFs to the edge in the case of an
SBA deployment is in fact counter-productive for some con-
trol plane procedures. The high number of interactions with
the NFs residing in the central cloud increases the completion
time, a problem which PP5GS by design mitigates with the
processing logic integrated in a single NF. Adoption of PP5GS
allows for a reduction of at least 40% in control plane traffic.

Our evaluation shows that PP5GS is indeed faster in pro-
cessing incoming requests, especially for more complex pro-
cedures such as Registration and PDU Session Establishment
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where improvements up to 50% are achieved. This insight is
particularly important because the faster these procedures are
completed, the faster the UEs can start sending their data.

From the perspective of operators, PP5GS is considerably
easier to deploy because they do not need to consider the inter-
NF dependencies and their impact on performance. Moreover,
having knowledge of the input traffic, the operators can better
orchestrate their networks by deploying and scaling PPNFs
accordingly. The operators can choose to offload some PPNFs
to the edge and thus provide better performance to the users
while reducing the incoming control traffic to the central core.

However, a limitation of PP5GS is that it requires a
procedure-aware traffic router able to distinguish and forward
the incoming traffic to the correct PPNFs. This entity would
then be deployed between gNBs and PPNFs, abstracting the
architecture of 5GC. In future generations of mobile networks
this routing logic can be integrated directly in the gNB, sim-
ilarly to procedure-aware routing in our gNBEmu. Moreover,
in PP5GS it can be difficult to leverage multi-vendor deploy-
ments, at least using the same definition as of today. However,
multi-vendor deployments are still viable in a system where
each PPNF is developed from a different vendor, as long as the
state information is stored remotely in a standardized format.

In the future, we plan to evaluate the data plane performance
and assess how adopting PP5GS in the control plane impacts
the user experience. Furthermore, we deem it important to
investigate the behavior of PP5GS in dynamic autoscaling
deployments and in the face of failures to then propose
adequate recovery mechanisms.

APPENDIX A
TRAFFIC GENERATION - GNB & UE EMULATOR

Our proposed architecture focuses on improving the
performance of the 5GC control plane while omitting data
plane evaluations since the functional decomposition of 5GC
does not affect the UPF to the same degree as the other
NFs. Therefore, benchmarking PP5GS and comparing it with
other stateful and stateless deployments requires a tool capa-
ble of generating a high volume of control plane input
traffic (UE requests). UERANSIM [42] is one open-source
tool that allows researchers to deploy multiple UE and gNB
instances and evaluate the correctness of their SGC deploy-
ments. However, UERANSIM executes new UEs as separate
processes instead of simply emulating their communication,
thus making it not suitable for our control plane stress-testing
evaluations where hundreds of UEs/s are initialized.

Therefore, in the absence of open-source tools that would
satisfy our requirements, we developed a gNB and UE
Emulator (gNBEmu). This tool supports the parallel execu-
tion of UE-related control plane procedures for an arbitrary
number of UEs. In its current version, it implements the
necessary logic for the emulation of the four procedures men-
tioned in Table I, and can be easily extended to support
more procedures. It is developed in Go language and lever-
ages the open-source libraries of FreeSGC such as the ones
related to NGAP/NAS communication, MongoDB API, UE
authentication, etc.
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database:
name: free5gc
url: mongodb://10.244.0.120:27017

ue:

servPLMNID: 20893
cipheringAlg: 0
integrityAlg: 4

emulation:

gnbIPAddress: 192.168.160.10
gnbSCTPPort: 9487

tasks:

- amf: 192.168.160.1:30320
procedure: registration
firstUEID: 1
warmupNumberOfUEs: 20
totalEntriesInDB: 100000
emulNumberofUEs: 1000
newUEsPerSecond: 25
IATms: 3

Listing 1. Sample configuration file for gNBEmu.

Before describing in more details the design and implemen-
tation of gNBEmu, we would like to point out a fundamental
difference that exists between control plane and data plane
traffic generators. Generally, when generating traffic in the
data plane, we simply need to make sure that data packets are
sent fast and the overall traffic meets the predefined model
parameters. This is however not enough for the control plane
communication. As explained in Section IV-B, the successful
completion of control plane procedures requires exchanging a
standardized set of messages between SG-RAN and 5GC. This
means that the traffic generator must be able to initiate new
procedures, correctly parse the response coming from AMF
and use the received information to build the subsequent mes-
sages. Similar to AMF, gNBEmu implements a Finite State
Machine (FSM) to keep track of the state of each UE in order
to correctly execute the control plane procedures. Initiating a
procedure for a UE is done using an external trigger. After that,
with each successful message exchange, the FSM advances to
the next state until the execution of the procedure has fin-
ished. FSM is a fast mechanism that allows us to automate
the execution of procedures and ensure correctness by quickly
evaluating the response coming from 5GC.

To better understand the operation of gNBEmu and its
capabilities, we summarize its execution flow below:

1) Emulator’s context is initialized by parsing the configu-
ration file. As shown in Listing 1, the configuration file
contains a number of different parameters that define
the behavior of gNBEmu. We divide these parameters
in three categories:

e database - This block contains the name and
URL of the database (DB) that stores UE-related
information. It is the same DB instance that is later
used by NRF and UDR to retrieve/store information
(i.e., the MongoDB instance in case of Free5GC).

e ue - Here we provide information for the emu-
lated UEs, such as the Public Land Mobile Network
ID (PLMNID) and the ciphering and integrity algo-
rithms used to encrypt/decrypt NAS messages.
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e emulation - This block contains information
that defines the emulation process. For exam-
ple, emulNumberofUEs represents the number
of UEs to be emulated, totalEntriesInDB
represents the number of UE entries in the DB
and it can be higher than the emulated UEs,
newUEsPerSecond is the number of new proce-
dures to be triggered every second, while TATms
specifies the interarrival in milliseconds between
each trigger. The type of control plane procedures to
be executed together with the AMF’s NGAP server
information are given in the tasks list.

2) Inapreemptive manner to avoid any delay during the emu-
lation process, gNBEmu initializes the contexts for all the
UEs that will be emulated. Therefore, unique International
Mobile Subscriber Identity (IMSI) and authentication
keys are generated for each UE. Additionally, a unique
RAN_UE_NGAP_ID is assigned to each UE for the
purpose of identifying it within the gNB.

3) Next, the generated contexts are used to build entries
for the DB. These entries are then submitted to the DB
in chunks (default chunk size is 20000 entries) which
greatly reduces the time to execute this step. Indexing
based on the UE-ID is also enabled because it is crucial
for the optimal operation of the DB instance.

4) gNBEmu enters the control plane procedures exe-
cution phase. This phase is actually split into two
stages: i) warmup where a burst execution for
warmupNumberOfUEs is performed, and ii) eval-
uation where gNBEmu executes the procedures for
emulNumberofUEs and measurements are collected.
In the evaluation stage, the generated traffic follows the
parameters set by newUEsPerSecond and IATms.
Both these stages are performed for each of the specified
procedures in the configuration file, with a predefined
sleep period in between. New UEs are triggered using
goroutines which are lightweight execution threads.
This enables concurrency and avoids issues when spawn-
ing the execution of multiple UEs in parallel.

5) Submitting the measurements to the collector applica-
tion via HTTP communication. During the evaluation
stage, the beginning and end of all the procedures are
timestamped for each emulated UE. Using these values,
the Procedure Completion Times are calculated and they
are then submitted for post-processing to the collector.

Given that the NGAP/NAS RAN-Core communication runs

over Stream Control Transmission Protocol (SCTP), we have
made some modifications to its parameters that allow for faster
execution and thus more load generated towards 5GC. For
instance, after observing the exchanged packet sizes, we set
the SCTP socket’s read_buffer_size to 256 bytes. This
modification allows for received messages to be dispatched
and processed as fast as possible. Additionally, the default
configuration of SCTP enables a Nagle-like algorithm that
reduces the number of packets in the network by enqueuing
them until a threshold is reached. However, this causes addi-
tional delays in the network and therefore we have disabled it.
The aforementioned modifications are done also on the 5SGC
side.
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Lastly, we would like to highlight the flexibility that
gNBEmu gives us with regards to traffic forwarding. In this
work we propose a functional split that is based on control
plane procedures, as explained in Section IV-B. Such an archi-
tecture means that each of the PPNFs implements an NGAP
server and RAN needs to connect to all of them. Therefore, to
evaluate PP5SGS we need to split the input traffic according to
the procedure it belongs to and forward it to the correct end-
points. To achieve this, we implement a procedure-based traffic
forwarding mechanism in gNBEmu. For each procedure, we
provide the endpoint information in the tasks entry of the
configuration file, as explained above.

APPENDIX B
UPF EMULATOR

As mentioned in Section III-C, the Free5GC project includes
a software implementation of UPF. However, when perform-
ing initial tests we noticed that there was a scalability issue
with the UPF. First, we tried increasing the buffer sizes in
UPF so that they would not overflow during the emulation
of high number of UEs. After some further testing, it was
observed that this modification was not enough to solve the
issue because the UPF would again break once we increase
the number of emulated UEs in parallel. Given this situation,
we realized that it would be necessary to develop a lightweight
UPF Emulator (UPFe) that would allow us to evaluate the PDU
Session Establishment and PDU Session Release procedures
for the same input rates as Registration and Deregistration.
The only requirements for UPFe were to be able to connect
to the Packet Forwarding Control Protocol (PFCP) end-
point (e.g., SMF or PPNF), correctly parse the incoming
messages, and build the response messages indicating cre-
ation/modification/deletion of the data plane resources. Since
we focus explicitly on the control plane performance, UPFe
does not implement any mechanism to allocate resources to the
UEs and initialize data plane tunnels. Similarly to gNBEmu,
we develop UPFe in Go and leverage the open-source PFCP
library shipped with Free5GC.
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